Skip to content

📊 Graphic Displays of Basic Statistical Descriptions of Data

🎯 Objective

To understand and visualize basic statistical descriptions of data using graphical methods such as:

  • Quantile Plot
  • Quantile-Quantile (Q-Q) Plot
  • Histogram
  • Quartile Plot (Box Plot)
  • Distribution Chart (Density Plot / KDE)

Quantile Plot

✳️ Definition

A quantile plot displays the ordered data against their cumulative probabilities.
It helps visualize how data values are distributed and whether they deviate from a uniform or theoretical distribution.

📐 Formula

For ordered data values \( x_{(1)} \le x_{(2)} \le ... \le x_{(n)} \) :

\[ p_i = \frac{i - 0.5}{n} \]

Each data point is plotted as \(( (p_i, x_{(i)}) )\).

🧮 Manual Example

Given data: [10, 12, 15, 18, 20]

i x(i) p = (i-0.5)/n
1 10 0.1
2 12 0.3
3 15 0.5
4 18 0.7
5 20 0.9

Plot these \( (p, x) \) points to get the quantile plot.

quantile


Quantile–Quantile (Q–Q) Plot

✳️ Definition

A Q–Q plot compares the quantiles of the sample data with those of a theoretical distribution (usually normal).

🧮 Manual Example

Given sample data: [5, 6, 7, 8, 9] (n=5)

Step 1: Compute ordered z-values (theoretical quantiles for normal distribution).

For i = 1 to n:

\([ p_i = \frac{i - 0.5}{n} ]\)

i Data \( x_i \) \( p_i \) \( z(p_i) \) from Z-table
1 5 0.1 -1.28
2 6 0.3 -0.52
3 7 0.5 0.00
4 8 0.7 0.52
5 9 0.9 1.28

Plot \( (z, x) \). If points form a straight line, data ~ Normal.

qq_plot


🧩 References

  1. Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.
  2. Cleveland, W. S. (1993). Visualizing Data. Hobart Press.
  3. Seaborn Documentation: https://seaborn.pydata.org
  4. Matplotlib Documentation: https://matplotlib.org